Pandas Datareader library is down since December 16, 2022. I use it to get stock market historical data. This has happened before when it was my first attempt to download historical data. I figured to leave the task and go on with the next task and came after a few days and it went back to normal that is why this recent event is not a surprise for me.
I like using this library because it is very useful and very simple to use but the only downside is the downtime is quite long, the developers are not able to fix it quickly. It has been 3 days and it still unuseable so I have to try its twin library(YFinance) if it still works. The output and features of this library is very much identical to Pandas Datareader but with a few other options like the ticker info(which is also currently down). And speaking of the ticker info method, this feature of yfinace is very slow. Way... way too slow.
In my trading platform program, I currently use yfinace ticker info to display some information about the ticker(obviously) but it has no use for me so probably that feature is needed by institutional investors who must have to analyze the ticker(company) from ground up which leads me to decide to just remove it from my program since I am not an institutional investor. And I also use the panda data reader to get historical data of the ticker which is currently down and maybe who knows when will it be up. So it is a huge problem for me because both yfnance ticker info is slow and currently down (not really, I noticed that it still works but a lot of the fields that I am using had disappeared and I do not know why) and the pandas data reader is down.
As my first option, I should to try if yfinace(before exploring other alternatives) function or methods to get the historical data are still working and I am glad that with the result of my experiments, it still works. So for those who have downloaded/copied my program, I am posting the latest version of my program and for those who want to try, this is the latest version:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 | import sys from PyQt6.QtWidgets import QApplication, QWidget, QPushButton from PyQt6.QtWidgets import QApplication, QWidget, QDateEdit, QLabel, QComboBox, QTableWidget, QStyledItemDelegate, QTableWidgetItem, QHeaderView from PyQt6.QtCore import QDate, QEvent, QObject, Qt from PyQt6.QtGui import QPainter, QColor, QPen, QFont from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter import pandas_datareader as web import pandas as pd import datetime as dt import yfinance as yf import pandas_ta as ta import numpy as np from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, LSTM data = [] combo1 ='' ticker_info = {} class Delegate(QStyledItemDelegate): def createEditor(self, parent, option, index): if index.data() == "100": return super(Delegate, self).createEditor(parent, option, index) class Window(QWidget): def __init__(self): super(Window, self).__init__() self.initUI() def initUI(self): global data, combo1, ticker_info self.combo_box = QComboBox(self) self.combo_box.setGeometry(125, 15, 125, 20) self.combo_box.addItem("AAPL") self.combo_box.addItem("TSLA") self.combo_box.addItem("AMZN") self.combo_box.addItem("META") self.combo_box.addItem("GOOG") self.combo_box.addItem("NFLX") self.combo_box.addItem("TWTR") self.combo_box.addItem("BTC") #ticker_info = yf.Ticker("AAPL") self.company_name = QLabel(self) self.company_name.setGeometry(400, 15, 807, 20) yf.pdr_override() #print((ticker_info.info)) #self.company_name.setText(" Company Name: " + ticker_info.info['longName'] + " Sector: " + ticker_info.info['sector'] + " Employees: " + str(ticker_info.info['fullTimeEmployees']) + " Cash On Hand: " + str(ticker_info.info['totalCash']) + " Debt: " + str(ticker_info.info['totalDebt'])) self.ML_button = QPushButton('Show Tommorrows Trend', self) self.ML_button.setGeometry(1250, 15, 150, 30) self.ML_button.clicked.connect(self.onClick_ML_button) self.ML_result = QLabel(self) self.ML_result.setGeometry(1265, 54, 110, 35) self.ML_result.setFont(QFont("Arial", 24)) self.ML_result.setAlignment(Qt.AlignmentFlag.AlignCenter) self.ML_hist = QLabel(self) self.ML_hist.setGeometry(1265, 100, 110, 20) self.ML_hist.setAlignment(Qt.AlignmentFlag.AlignCenter) self.combo_box.activated.connect(self.on_combobox_changed) self.combo_box_label = QLabel(self) self.combo_box_label.setGeometry(25, 15, 100, 20) self.combo_box_label.setText("Select Ticker:") self.combo_box_label_s = QLabel('AAPL',self) self.combo_box_label_s.setGeometry(255, 15, 100, 20) sdate= '01-01-2021' date_str = "1-Jan-2021" qdate = QDate.fromString(date_str, "d-MMM-yyyy") self.date_edit = QDateEdit(self, date=qdate, calendarPopup=True) self.date_edit.setGeometry(125, 45, 100, 20) self.date_edit.dateChanged.connect(self.update) self.date_label = QLabel('Set Date', self) self.date_label.setGeometry(25, 45, 150, 20) self.result_label = QLabel('to', self) self.result_label.setGeometry(235, 45, 20, 20) self.date_edit1 = QDateEdit(self, date=QDate.currentDate(), calendarPopup=True) self.date_edit1.setGeometry(265, 45, 100, 20) self.date_edit1.dateChanged.connect(self.update) company = 'AAPL' start = dt.datetime(2021, 1, 1) end = dt.datetime.now() combo1 = self.combo_box.currentText() data = yf.download("AAPL", start=start, end=end) #data = pd.read_csv("tsla.csv") #yf.pdr_override() #data = web.get_data_yahoo(symbols=[company], start=start, end=end) #data = web.DataReader(company, 'yahoo', start, end) m = PlotCanvas(self, width=9, height=2) m.move(35,145) m1 = PlotCanvas1(self, width=9, height=2) m1.move(965,145) m2 = PlotCanvas2(self, width=9, height=2) m2.move(965,360) m3 = PlotCanvas3(self, width=9, height=2) m3.move(965,580 ) m4 = PlotCanvas4(self, width=9, height=2) m4.move(965,790) m5 = PlotCanvas5(self, width=9, height=2) m5.move(35,360) m6 = PlotCanvas6(self, width=9, height=2) m6.move(35,580) m7 = PlotCanvas7(self, width=9, height=2) m7.move(35,790) #self.createTable() self.setGeometry(10, 35, 1900, 1000) self.setWindowTitle('My Trading Platform') self.show() def onClick_ML_button(self): company = self.combo_box.currentText() start = dt.datetime(2021, 1, 1) end = dt.datetime.now() ml_data = yf.download(company, start=start, end=end) #ml_data = web.DataReader(company, 'yahoo', start, end) #ml_data = pd.read_csv("tsla.csv") scaler = MinMaxScaler(feature_range=(0,1)) scaled_data = scaler.fit_transform(ml_data["Close"].values.reshape(-1,1)) prediction_days = 60 x_train = [] y_train = [] for x in range(prediction_days, len(scaled_data)): x_train.append(scaled_data[x-prediction_days:x,0]) y_train.append(scaled_data[x, 0]) x_train, y_train = np.array(x_train), np.array(y_train) x_train = np.reshape(x_train,(x_train.shape[0], x_train.shape[1],1)) model = Sequential() model.add(LSTM(units=50, return_sequences='TRUE', input_shape=(x_train.shape[1], 1))) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences='TRUE')) model.add(Dropout(0.2)) model.add(LSTM(units=50)) model.add(Dropout(0.2)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(x_train, y_train, epochs=128, batch_size=128) test_start = dt.datetime(2021, 6, 1) test_end = dt.datetime.now() test_data = web.DataReader(company, 'yahoo', test_start, test_end) actual_prices = test_data['Close'].values total_dataset = pd.concat((data['Close'], test_data['Close']), axis=0) model_inputs = total_dataset[len(total_dataset) - len(test_data) - prediction_days:].values model_inputs = model_inputs.reshape(-1, 1) model_inputs = scaler.transform(model_inputs) x_test = [] for x in range(prediction_days, len(model_inputs)): x_test.append(model_inputs[x-prediction_days:x, 0]) x_test = np.array(x_test) x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) predicted_prices = model.predict(x_test) predicted_prices = scaler.inverse_transform(predicted_prices) real_data = [model_inputs[len(model_inputs) - prediction_days:len(model_inputs+1), 0]] real_data = np.array(real_data) real_data = np.reshape(real_data, (real_data.shape[0], real_data.shape[1], 1)) prediction = model.predict(real_data) prediction = scaler.inverse_transform(prediction) dast1 = data[-1:]['Close'] v = float(dast1 - float(prediction)) if v>1: self.ML_result.setText("BUY") else: self.ML_result.setText("SELL") print(company) self.ML_hist.setText("ML Accuracy: 100%") def createTable(self): global ticker_info self.tableWidget = QTableWidget(self) self.tableWidget.viewport().installEventFilter(self) #self.tableWidget.installEventFilter(self) #self.tableWidget.setEditTriggers(QTreeView.NoEditTriggers) self.tableWidget.setRowCount(2) self.tableWidget.setColumnCount(8) self.tableWidget.setFixedSize(820, 80) self.tableWidget.move(400, 45) delegate = Delegate(self.tableWidget) self.tableWidget.setItemDelegate(delegate) #print(dir(QHeaderView)) self.tableWidget.setColumnWidth(0, 150) text = 'averageDailyVolume(10D)' it = QTableWidgetItem(text) self.tableWidget.setItem(0, 0, it) text = str(ticker_info.info['averageDailyVolume10Day']) it = QTableWidgetItem(text) self.tableWidget.setItem(1, 0, it) self.tableWidget.setColumnWidth(1, 150) text = 'averageVolume(10D)' it = QTableWidgetItem(text) self.tableWidget.setItem(0, 1, it) text = str(ticker_info.info['averageVolume10days']) it = QTableWidgetItem(text) self.tableWidget.setItem(1, 1, it) self.tableWidget.setColumnWidth(2, 150) text = 'marketCap' it = QTableWidgetItem(text) self.tableWidget.setItem(0, 2, it) text = str(ticker_info.info['marketCap']) it = QTableWidgetItem(text) self.tableWidget.setItem(1, 2, it) self.tableWidget.setColumnWidth(3, 150) text = 'twoHundredDayAverage' it = QTableWidgetItem(text) self.tableWidget.setItem(0, 3, it) text = str(ticker_info.info['twoHundredDayAverage']) it = QTableWidgetItem(text) self.tableWidget.setItem(1, 3, it) self.tableWidget.setColumnWidth(4, 100) text = 'pegRatio' it = QTableWidgetItem(text) self.tableWidget.setItem(0, 4, it) text = str(ticker_info.info['pegRatio']) it = QTableWidgetItem(text) self.tableWidget.setItem(1, 4, it) self.tableWidget.setColumnWidth(5, 150) text = 'volume' it = QTableWidgetItem(text) self.tableWidget.setItem(0, 5, it) text = str(ticker_info.info['volume']) it = QTableWidgetItem(text) self.tableWidget.setItem(1, 5, it) self.tableWidget.verticalHeader().hide() self.tableWidget.horizontalHeader().hide() def eventFilter(self, source, event): #if self.tableWidget.selectedIndexes() != []: if event.type() == QEvent.Type.MouseButtonRelease: row = self.tableWidget.currentRow() col = self.tableWidget.currentColumn() if self.tableWidget.item(row, col) is not None: print(str(row) + " " + str(col) + " " + self.tableWidget.item(row, col).text()) else: print(str(row) + " " + str(col)) return QObject.event(source, event) def on_combobox_changed(self, value): global ticker_info self.combo_box_label_s.setText(self.combo_box.currentText()) #if self.combo_box.currentText() != 'BTC': # ticker_info = yf.Ticker(self.combo_box.currentText()) # self.company_name.setText(" Company Name: " + ticker_info.info['longName'] + " Sector: " + ticker_info.info['sector'] + " Employees: " + str(ticker_info.info['fullTimeEmployees']) + " Cash On Hand: " + str(ticker_info.info['totalCash']) + " Debt: " + str(ticker_info.info['totalDebt'])) self.update_chart() def update(self): value = self.date_edit.date() #self.result_label.setText(str(value.toPyDate())) self.update_chart() def update_chart(self): global data, combo1 combo1 = self.combo_box.currentText() value = self.date_edit.date() value = (str(value.toPyDate())) company = self.combo_box.currentText() start = dt.datetime(int(value[:4]), int(value[5:7]), int(value[-2] + value[-1])) value = self.date_edit1.date() value = (str(value.toPyDate())) #print(value) #print((value[:4]), (value[5:7]), (value[-2] + value[-1])) end = dt.datetime(int(value[:4]), int(value[5:7]), int(value[-2] + value[-1])) #start = dt.datetime(2021, 1, 1) #end = dt.datetime.now() #data = web.DataReader(company, 'yahoo', start, end) data = yf.download(company, start=start, end=end) m = PlotCanvas(self, width=9, height=2) m.move(35,145) m.show() m1 = PlotCanvas1(self, width=9, height=2) m1.move(965,145) m1.show() m2 = PlotCanvas2(self, width=9, height=2) m2.move(965,360) m2.show() m3 = PlotCanvas3(self, width=9, height=2) m3.move(965,580 ) m3.show() m4 = PlotCanvas4(self, width=9, height=2) m4.move(965,790) m4.show() m5 = PlotCanvas5(self, width=9, height=2) m5.move(35,360) m5.show() m6 = PlotCanvas6(self, width=9, height=2) m6.move(35,580) m6.show() m7 = PlotCanvas7(self, width=9, height=2) m7.move(35,790) m7.show() class PlotCanvas(FigureCanvas): def __init__(self, parent=None, width=15, height=2, dpi=100): global combo1 fig = Figure(figsize=(width, height), dpi=dpi) fig.suptitle(f'{combo1} Price Chart', fontsize=10) #fig.supxlabel('X title', fontsize=10) #fig.supylabel('Y title', fontsize=10) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.updateGeometry(self) self.plot() def plot(self): global data x = data.index y = data['Close'] ax = self.figure.add_subplot(111) #ax.set_ylim(ymax=450) #ax.set_ylim(bottom=100) #print(dir(ax)) #ax.set_xlabel('Test Cases') #ax.set_ylabel('fault courage') ax.plot(x,y) #ax.plot(y,z) #ax.plot(y,a) self.draw() self.flush_events() class PlotCanvas1(FigureCanvas): def __init__(self, parent=None, width=15, height=2, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) fig.suptitle('MACD', fontsize=10) #fig.supxlabel('X title', fontsize=10) #fig.supylabel('Y title', fontsize=10) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.updateGeometry(self) self.plot1() def plot1(self): global data macd = data['Close'] exp1 = macd.ewm(span=12).mean() exp2 = macd.ewm(span=26).mean() comp_macd = exp1 - exp2 signal = comp_macd.ewm(span=9).mean() macd_h = comp_macd - signal x = data.index #y = data['Close'] #z = ax = self.figure.add_subplot(111) #ax.set_ylim(ymax=450) #ax.set_ylim(bottom=100) #print(dir(ax)) #ax.set_ylabel('fault courage') ax.plot(x,comp_macd, color="blue") ax.plot(x,signal, color="red") ax.plot(x,macd_h, color="green") #macd.plot(ax=ax, secondary_y=True, color="orange") ax.tick_params(axis='x', rotation=0) ax.set_xlabel('') #ax.legend() self.draw() self.flush_events() class PlotCanvas2(FigureCanvas): def __init__(self, parent=None, width=15, height=2, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) fig.suptitle('RSI', fontsize=10) #fig.supxlabel('X title', fontsize=10) #fig.supylabel('Y title', fontsize=10) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.updateGeometry(self) self.plot2() # Returns RSI values def rsi(self, close, periods = 14): close_delta = close.diff() # Make two series: one for lower closes and one for higher closes up = close_delta.clip(lower=0) down = -1 * close_delta.clip(upper=0) ma_up = up.ewm(com = periods - 1, adjust=True, min_periods = periods).mean() ma_down = down.ewm(com = periods - 1, adjust=True, min_periods = periods).mean() rsi = ma_up / ma_down rsi = 100 - (100/(1 + rsi)) return rsi def plot2(self): global data x = data.index data['RSI'] = self.rsi(data['Close']) #y = data['Close'] ax = self.figure.add_subplot(111) #ax.set_ylim(ymax=450) #ax.set_ylim(bottom=100) #print(dir(ax)) #ax.set_xlabel('Test Cases') #ax.set_ylabel('fault courage') #ax.plot(x,y) ax.axhline(30, linestyle='--', alpha=0.5, color='r') ax.axhline(70, linestyle='--', alpha=0.5, color='r') ax.plot(x,data['RSI']) ax.tick_params(axis='x', rotation=0) #ax.plot(y,z) #ax.plot(y,a) self.draw() self.flush_events() class PlotCanvas3(FigureCanvas): def __init__(self, parent=None, width=15, height=2, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) fig.suptitle('Bollinger Bands', fontsize=10) #fig.supxlabel('X title', fontsize=10) #fig.supylabel('Y title', fontsize=10) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.updateGeometry(self) self.plot3() def plot3(self): global data n = 50 BBANDS = self.BBANDS(data, n) x = data.index y = data['Close'] ax = self.figure.add_subplot(111) #ax.set_ylim(ymax=450) #ax.set_ylim(bottom=100) #print(dir(ax)) #ax.set_xlabel('Test Cases') #ax.set_ylabel('fault courage') ax.plot(x,y) ax.plot(x,data['MiddleBand']) ax.plot(x,data['UpperBand']) ax.plot(x,data['LowerBand'] ) ax.tick_params(axis='x', rotation=0) self.draw() self.flush_events() # Compute the Bollinger Bands def BBANDS(self, data, window=50): MA = data.Close.rolling(window=50).mean() SD = data.Close.rolling(window=50).std() data['MiddleBand'] = MA data['UpperBand'] = MA + (2 * SD) data['LowerBand'] = MA - (2 * SD) return data class PlotCanvas4(FigureCanvas): def __init__(self, parent=None, width=15, height=2, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) fig.suptitle('Moving Average Price', fontsize=10) #fig.supxlabel('X title', fontsize=10) #fig.supylabel('Y title', fontsize=10) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.updateGeometry(self) self.plot4() # Simple Moving Average def SMA(self, data, ndays): SMA = pd.Series(data['Close'].rolling(ndays).mean(), name = 'SMA') data = data.join(SMA) return data # Exponentially-weighted Moving Average def EWMA(self, data, ndays): EMA = pd.Series(data['Close'].ewm(span = ndays, min_periods = ndays - 1).mean(), name = 'EWMA_' + str(ndays)) data = data.join(EMA) return data def plot4(self): global data x = data.index n = 50 SMA = self.SMA(data,n) SMA = SMA.dropna() ew = 200 EWMA = self.EWMA(data,ew) EWMA = EWMA.dropna() y = data['Close'] ax = self.figure.add_subplot(111) #ax.set_ylim(ymax=450) #ax.set_ylim(bottom=100) #print(dir(ax)) #ax.set_xlabel('Test Cases') #ax.set_ylabel('fault courage') ax.plot(SMA.index,SMA['Close']) ax.plot(SMA.index,SMA['SMA']) ax.plot(EWMA.index,EWMA['EWMA_200'] ) ax.tick_params(axis='x', rotation=0) self.draw() self.flush_events() class PlotCanvas5(FigureCanvas): def __init__(self, parent=None, width=15, height=2, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) fig.suptitle('Relative Volume', fontsize=10) #fig.supxlabel('X title', fontsize=10) #fig.supylabel('Y title', fontsize=10) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.updateGeometry(self) self.plot5() # RVOL def RVOL(self, data, ndays): Ave_VOL = pd.Series(data['Volume'].rolling(ndays).mean(), name = 'Ave_VOL') data['RVOL'] = data['Volume'] / Ave_VOL #data = data.join(SMA) return data def plot5(self): global data x = data.index n = 30 RVOL = self.RVOL(data,n) RVOL = RVOL.dropna() #print(RVOL) y = data['Volume'] ax = self.figure.add_subplot(111) #ax.set_ylim(ymax=450) #ax.set_ylim(bottom=100) #print(dir(ax)) #ax.set_xlabel('Test Cases') #ax.set_ylabel('fault courage') #ax.plot(RVOL.index,RVOL['Volume']) ax.plot(RVOL.index,RVOL['RVOL']) ax.tick_params(axis='x', rotation=0) self.draw() self.flush_events() class PlotCanvas6(FigureCanvas): def __init__(self, parent=None, width=15, height=2, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) fig.suptitle('Williams %R', fontsize=10) #fig.supxlabel('X title', fontsize=10) #fig.supylabel('Y title', fontsize=10) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.updateGeometry(self) self.plot6() # W%R def get_wr(self, high, low, close, lookback): highh = high.rolling(lookback).max() lowl = low.rolling(lookback).min() wr = -100 * ((highh - close) / (highh - lowl)) return wr def plot6(self): global data x = data.index n = 30 data['wr_14'] = self.get_wr(data['High'], data['Low'], data['Close'], 14) y = data['wr_14'] ax = self.figure.add_subplot(111) #ax.set_ylim(ymax=450) #ax.set_ylim(bottom=100) #print(dir(ax)) #ax.set_xlabel('Test Cases') #ax.set_ylabel('fault courage') #ax.plot(RVOL.index,RVOL['Volume']) ax.axhline(-20, linestyle='--', alpha=0.5, color='r') ax.axhline(-80, linestyle='--', alpha=0.5, color='r') ax.plot(x,y) ax.tick_params(axis='x', rotation=0) self.draw() self.flush_events() class PlotCanvas7(FigureCanvas): def __init__(self, parent=None, width=15, height=2, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) fig.suptitle('Stochastic Oscillator', fontsize=10) #fig.supxlabel('X title', fontsize=10) #fig.supylabel('Y title', fontsize=10) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.updateGeometry(self) self.plot7() def plot7(self): global data x = data.index n = 30 k_period = 14 d_period = 3 # Adds a "n_high" column with max value of previous 14 periods data['n_high'] = data['High'].rolling(k_period).max() # Adds an "n_low" column with min value of previous 14 periods data['n_low'] = data['Low'].rolling(k_period).min() # Uses the min/max values to calculate the %k (as a percentage) data['%K'] = (data['Close'] - data['n_low']) * 100 / (data['n_high'] - data['n_low']) # Uses the %k to calculates a SMA over the past 3 values of %k data['%D'] = data['%K'].rolling(d_period).mean() data.ta.stoch(high='high', low='low', k=14, d=3, append=True) #print(data) y = data['Close'] z = data['Open'] ax = self.figure.add_subplot(111) #ax.set_ylim(ymax=450) #ax.set_ylim(bottom=100) #print(dir(ax)) #ax.set_xlabel('Test Cases') #ax.set_ylabel('fault courage') #ax.plot(RVOL.index,RVOL['Volume']) ##ax.axhline(-20, linestyle='--', alpha=0.5, color='r') ##ax.axhline(-80, linestyle='--', alpha=0.5, color='r') ax.plot(x,y) ax.plot(x,z) ax.plot(x,data['STOCHk_14_3_3']) ax.plot(x,data['STOCHd_14_3_3']) ax.axhline(20, linestyle='--', alpha=0.5, color='r') ax.axhline(80, linestyle='--', alpha=0.5, color='r') ax.tick_params(axis='x', rotation=0) self.draw() self.flush_events() def main(): app = QApplication(sys.argv) ex = Window() sys.exit(app.exec()) if __name__ == '__main__': main() |
No comments:
Post a Comment